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Abstract. The presence/absence of a Berry phase depends on the topology of the manifold
of dynamical Jahn–Teller potential minima. We describe in detail the relation between these
topological properties and the way in which the lowest two adiabatic potential surfaces become
locally degenerate. We illustrate our arguments through spherical generalizations of the linear
T ⊗ h and H⊗ h cases, relevant for the physics of fullerene ions. Our analysis allows us to
classify all of the spherical Jahn–Teller systems with respect to the Berry phase. Its absence
can, but does not necessarily, lead to a nondegenerate ground state.

1. Introduction

The traditional field of degenerate electron–lattice interactions (the Jahn–Teller effect) in
molecules and impurity centres in solids [1, 2] has attracted new interest in recent years,
excited by the realization of new systems which call for a revision of a number of commonly
accepted beliefs. A whole range of icosahedral molecular systems including C60 ions and
some higher fullerenes, thanks to the rich structure of the symmetry group, are characterized
by representations of the electronic and vibrational states of the isolated molecule/ion that
are up to fivefold degenerate. New Jahn–Teller (JT) systems have therefore been considered
theoretically [2–4], and intriguing features have been found [4–7]. A particularly surprising
property has been demonstrated recently: the possibility of a symmetry switch of the
molecular ground state [7, 8], connected to theabsenceof a Berry phase in the coupled
dynamics of the electrons and vibrations.

As is well known, the molecular symmetry, reduced in the static JT effect with
the splitting of the electronic state degeneracy, is restored when the coherent tunnelling
between equivalent distortions is considered, in the dynamical Jahn–Teller (DJT) effect. In
this context an empirical ‘symmetry-conservation rule’, sometimes referred to as ‘Ham’s
theorem’, was commonly accepted; this stated that the symmetry of the vibronic DJT ground
state, at all coupling strengths, remains the same as that of the electronic multiplet prior
to coupling [2]. All linear JT systems known of until a few years ago, for single-electron
occupancy, systematically satisfy this empirical rule. It was understood recently that this
phenomenon, not automatically implied by the DJT physics, is in reality a ‘fingerprint’ of
a Berry phase [9] in the entangled electronic–phononic dynamics [4, 7, 10]. Consequently,
this geometrical phase seemed a universal feature of the DJT systems.

The discovery of the first dynamical JT systemwithout a Berry phase, showing a
nondegenerate ground statein the strong-coupling limit [7, 8], was unexpected. This is the
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model that in spherical symmetry is indicated asD(2) ⊗ d(2), in which electrons of angular
momentumL = 2 interact with vibrations also belonging to anl = 2 representation. This
system is relevant to the physics of fullerene ions, C+

60, for which the fivefold-degenerate
electronic state has the Hu icosahedral label and the quadrupolar distortions correspond to
some of the hg modes [7]. It has been shown both analytically and numerically that, for
increasing coupling, a nondegenerate state in the vibronic spectrum moves down, crossing
the fivefold ground state at some finite value of the coupling parameter, and thus becoming
the ground state for strong coupling [7, 8].

In this work, we review the mechanism of the Berry phase in degenerate electron–
vibration coupled systems, and uncover the detailed reasons for the absence of this geometric
phase in theD(2) ⊗ d(2) system. By exploiting the insight gained, we generalize the result
to higher-angular-momentum spherical couplings, finding a whole class of DJT systems for
which there is no Berry phase. For many (but, interestingly, not all) of these systems,
the ground state is nondegenerate. We present numerical evidence of this for the simplest
generalization of the basicD(2) ⊗ d(2) model. For simplicity, in this work we use the
language of linear spherically symmetrical models: the situation that we have in mind is
a single valence fermion in a degenerate shell, orbiting in the potential generated by a
deformable jelly-like spherical ‘core’ having one multipolar harmonic mode of vibration
which perturbs the motion of the fermion. This is an idealization of the JT physics of C60

ions and of open-shell alkali metal clusters. By the inclusion of relativistic effects, similar
models could also be made relevant to odd-A nuclei. Our analysis, however, can be extended
to molecular point groups, by substituting in the relevant Clebsch–Gordan coefficients [18].
Some cases, such as the linear T⊗ h case in icosahedral symmetry (or the equally coupled
T⊗ (e+ t) case in cubic symmetry), map exactly to spherical models, but this is not always
the case, and other interesting results might be found by further investigation of different
systems, such as the interaction of G electronic states in icosahedral symmetry.

We structure the paper as follows. In section 2, we introduce the basic JT Hamiltonian,
along with the fundamental transformations required to recast it in a semiclassical form.
Section 3 reviews the mechanism responsible for the presence of the Berry phase in most
DJT systems, and its consequences for the low-energy part of their spectrum. In section 4,
the mechanism allowing us to get rid of the Berry phase in some systems is unveiled,
and a class of models sharing this property is proposed. Section 5 reports some numerical
results confirming and complementing the predictions of section 4. In section 6, we discuss
possible generalizations of our model to higher-order couplings and discrete symmetry
groups. Finally, conclusions are drawn in section 7.

2. The models

According to the general theory of the JT effect [2], a degenerate electronic level
corresponding to a representation0 of the molecular symmetry point group interacts
with all of the vibrational modes corresponding to representations{3} contained in the
symmetric part of the direct product of0 with itself. For simplicity, in this work we restrict
consideration to just one degenerate mode. The Hamiltonian for this ‘0 ⊗3’ case reads

H = h̄ω
|3|∑
i=1

b
†
i bi +He−v (1)

where b†i /bi are the creation/annihilation operators for the harmonic vibrational mode
componenti, and He−v is the interaction Hamiltonian, which, to linear order in the boson
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operators, can be written as

He−v = 1

2
gh̄ω

|3|∑
i=1

|0|∑
j,k=1

(bic
†
j ck〈3i|0j0k〉 + HC). (2)

cj is the fermion operator for orbitalj , 〈3i|0j0k〉 are the Clebsch–Gordan coefficients of
the symmetry group of the problem, andg is the dimensionless coupling parameter. For
the purpose of illustrating our analysis, it is particularly convenient to stick to the case in
which the symmetry group is that of three-dimensional rotations, SO(3). In the following,
therefore, we focus on the coupling of an electronic state of angular momentumL (whose
representation0 is indicated asD(L)) with a degenerate vibration of angular momentuml
(of representation3 ≡ d(l)). For this case, the Hamiltonian reads

H = h̄ω
l∑

m=−l

{
b†mbm +

g

2

L∑
k,k′=−L

(−1)k
′ [
b†m + (−1)mb−m

]
c
†
kck′ 〈lm|Lk,L−k′〉

}
(3)

where some of the symmetries of the SO(3) Clebsch–Gordan coefficients are implied.
The Hamiltonian (3) is suitable for perturbation calculations (smallg-values), and as a

starting point for numerical diagonalization methods, such as the Lanczos technique. Yet,
the Berry phase is a semiclassical concept, useful only in the medium/large-g regimes. Here
it is convenient to switch to areal representation of the vibrational degrees of freedom.

We apply two unitary transformations, both to the electronic operators and the vibrational
ones. We define a new set of electronic operators,c̃m (and consequently their Hermitian
conjugatec̃†m), m = −L, . . . , L, via the transformation

c̃0 = c0(
c̃m
c̃−m

)
= exp{iπ [(−1)m − 1] /4}√

2

(
i −i
1 1

)(
cm
c−m

)
m > 0.

(4)

The second transformation expresses the 2l + 1 boson operatorsBm ≡ b†m + (−1)mb−m in
terms of the Hermitian ‘coordinate’ operatorsqm as follows:

B0 =
√

2q0(
Bm
B−m

)
=
(
(−1)m −i(−1)m

i 1

)(
qm
q−m

)
m > 0.

(5)

The remaining componentsb†m − (−1)mb−m can be expressed correspondingly in terms of
the momentum operatorspm conjugate toqm. We stress that these transformations are by
no means unique. Any further orthogonal transformation of the real coordinates leads to
equivalent results.

Eventually, the Hamiltonian operator (3) transforms into the form

H = 1

2
h̄ωl

l∑
M=−l

(p2
m + q2

m)+He−v (6)

with

He−v = 1√
2
gh̄ω

l∑
m=−l

qm

L∑
j,k=−L

c̃
†
j V

(m)
j,k c̃k. (7)

It is straightforward to compute the(2L + 1) × (2L + 1) coupling matricesV (m), for any
value ofL and l. For brevity, we introduce the symbols

γ+j,k ≡ 〈l j + k|Lj,Lk〉 γ−j,k ≡ 0.
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In this notation, the matrices for theL = 2 case are

V (0) =


γ+−2,2 0 0 0 0

0 −γ+−1,1 0 0 0
0 0 γ+0,0 0 0
0 0 0 −γ+1,−1 0
0 0 0 0 γ+2,−2

 (8)

V (±1) =



0 −γ
∓
−1,2√

2
0

γ±−1,2√
2

0

−γ
∓
2,−1√

2
0 −γ∓0,1 0 −γ

±
2,−1√

2
0 −γ∓1,0 0 −γ±1,0 0

γ∓2,−1√
2

0 −γ±0,1 0 −γ
∓
2,−1√

2

0 −γ
±
−1,2√

2
0 −γ

∓
−1,2√

2
0


(9)

V (±2) =



0 0 −γ±0,2 0 0

0 −γ
±
1,1√
2

0
γ∓1,1√

2
0

γ±0,2 0 0 0 −γ∓2,0
0

γ∓1,1√
2

0
γ±1,1√

2
0

0 0 −γ∓0,2 0 0


(10)

V (±3) =



0 −γ
∓
1,2√
2

0 −γ
±
1,2√
2

0

−γ
∓
2,1√
2

0 0 0 −γ
±
2,1√
2

0 0 0 0 0

−γ
±
2,1√
2

0 0 0
γ∓2,1√

2

0 −γ
±
1,2√
2

0
γ∓1,2√

2
0


(11)

V (±4) =



γ±2,2√
2

0 0 0 −γ
∓
2,2√
2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−γ
∓
2,2√
2

0 0 0 −γ
±
2,2√
2


. (12)

Note that the forms ofV (0), V (±1), andV (±2) apply to the coupling to bothl = 2 andl = 4
vibrons (of course, the numerical values of the coefficients are different), while theV (±3)-
andV (±4)-matrices are relevant only forl = 4.
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For largerL-values, the structure of the central 5× 5 block (corresponding to indices
j = −2 to 2) of the corresponding coupling matrices is conserved, additional matrix
elements being added externally in a simple way. For example, for anyL and l, the
V (0)-matrix is diagonal with matrix elementsV (0)k,k = (−1)kγ+k,−k. Similarly, if l = 2L, then
the only nonzero elements of theV (±l)-matrices are

V
(l)
±l,±l = ±

γ±l,l√
2

V
(−l)
±l,∓l = −

γ±l,l√
2
.

As anticipated, the form (6), (7) of the Hamiltonian is suitable for a semiclassical
treatment, in the spirit of the Born–Oppenheimer (BO) approximation, i.e. a factorization
of the electronic ‘fast’ dynamics from the ‘slow’ distortionsqm, which are quantized as
a second step. In this scheme, we briefly review the Berry phase mechanism, and its
consequences for the factorized dynamics.

A

A’
π2

π1

∆

Figure 1. A sketch of the electronic sphere. The picture individuates the two classes of path
mapping onto closed loops in the JTM. Paths of the typeπ1 are closed on the electronic sphere;
they can be contracted to a single point, and therefore they cannot carry any sign change. Also
paths of typeπ2 map to closed loops on the JTM, since A and A′ represent eigenvectors of the
same interaction matrix4. Yet, points A and A′ are antipodal, and therefore paths of the type
π2 involve a sign change (from A to A′) of the electronic state (a Berry phase). These two types
of path can be distinguished in all|0| > 3-dimensional cases.

3. The Berry phase

The traditional BO scheme assumes that the electrons, moving much more quickly than the
ions, follow the ionic (vibrational) motion adiabatically, with the only effect of generating
a potential energy for the vibrational motion. This approximation relies on separations
between consecutive electronic levels that are much larger than the typical vibrational
energies ¯hω. In a JT problem, the BO treatment starts with the diagonalization of (7)
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in the electronic degenerate space, at fixed distortion fieldq, i.e. the diagonalization of the
matrix

4 =
∑

qmV
(m).

Each electronic eigenvector|ψξ 〉 of 4, of eigenvalueλξ , generates a BO potential sheet

Vξ (q) = h̄ω
[

1

2

∑
m

q2
m +

g√
2
λξ (q)

]
including the harmonic potential of the free vibrations. At strong enough couplingg, the
separation of the potential sheets becomes large enough that the adiabatic motion can be
assumed to always follow the lowest BO potential sheet, while virtual electronic excitations
may be treated as a small correction. For Hamiltonians of type (3), the set of pointsqmin of
minimum potential energy, i.e. the classical stable configurations, constitutes a continuous
manifold, often called the Jahn–Teller manifold (JTM), and the value of the lowest BO
potential there is the classical JT stabilization energyEclas= Vmin(qmin).

On the other hand, due to the time-reversal invariance ofH , the space of all possible
(normalized) electronic eigenstates can be represented by a (hyper)sphere in the [2L+ 1]-
dimensional real space (see figure 1). The BO dynamics realizes an adiabatic mapping of the
vibrational space into this electronic space [11]. Indeed, every pointq on the JTM (in the
vibrational space) is associated with the electronic wave function|ψmin(q)〉, corresponding
to the lowest eigenvalueλmin of the electron–vibron interaction matrix4:

4(q)|ψmin(q)〉 = λmin(q)|ψmin(q)〉. (13)

This adiabatic mapping is two-valued, since opposite points±|ψmin(q)〉 on the electronic
sphere give the same JT stabilization energy, thus corresponding to the same optimal
distortion on the JTM. This identification of the antipodal points through the mapping is
the mechanism allowing the JTM to have different connectedness [12] from the electronic
sphere. The latter is of course simply connected, i.e. any closed path, or loop, on it can be
smoothly contracted to a single point. The JTM, instead, may well be multiply connected,
i.e. it can have intrinsic ‘holes’ in its topology. In particular, in addition to the contractible
loops (such as that mapping ontoπ1 on the electronic sphere sketched in figure 1), on the
JTM, we have the nontrivial class of those loops mapped onto a path going from a point to
its antipode on the electronic sphere, such asπ2 in figure 1. In the traditional DJT systems
(E⊗e, T⊗h), these two classes of path are topologically distinct: loops belonging to class
2 may never be smoothly deformed into loops belonging to class 1, whence the multiple-
connectedness property of the JTM. We see therefore that this multiple connectedness is
intimately related to the mapping between the JTM and the electronic sphere. The electronic
sign change characterizing the loops belonging to class 2 is a case of a Berry phase [9].

When the vibrational motion is also quantized, the overall (vibronic) BO wave function
is factorized into the direct product of the electronic adiabatic state and the wave function for
the slow degrees of freedomq: since the vibronic wave function is a regular, single-valued
function, the degrees of freedomq must cope with the electronic phase change, which acts as
a special boundary condition for the quantization. As a consequence, the motion on the JTM
is constrained by special selection rules. For example, the JTM of the simple E⊗ e system
is a circle: the low-energy vibronic spectrum is indeed aj2-spectrum, as for a circular
rotor, but the Berry phase impliesj = ± 1

2,± 3
2, . . ., instead ofj = 0,±1,±2, . . . as for an

ordinary quantum rotor [2, 13]. Similarly, the JTM of the T⊗ h model (i.e.D(1) ⊗ d(2), in
the spherical language) is equivalent to a sphere [4, 14], but out of all of the states, labelled
J,M, of a particle on a sphere, the Berry phase keeps only the odd-J ones [2, 4, 14]. Note,
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in particular, that in these examples the presence of a Berry phase rules out a nondegenerate
ground state. The same symmetry of the degenerate electronic state, prior to the vibronic
coupling/distortion, is enforced for the strong-coupling DJT ground state.

4. Absence of the Berry phase

As anticipated above, though very frequently found, the Berry phase isnot automatically
implied by linear JT Hamiltonians (1). The above discussion should make clear that the
absence of the Berry phase in a DJT system is linked to a mechanism leading to equivalence
of the paths in classes 1 and 2. This mechanism should also coexist with the two-valued
adiabatic mapping sketched in the previous section. The solution of this riddle is provided
by a pointqd on the JTMwhere the mapping is degenerate, i.e. it linksqd not just to a pair
of opposite points±|ψmin(qd)〉 on the electronic sphere, but to the whole circle of linear
combinations(cosθ)|ψ1(qd)〉 + (sinθ)|ψ2(qd)〉 of two degenerate electronic eigenstates
(such as, for example,1 in figure 1). If such a point is present, any loop of class 2 on
the JTM may be deformed smoothly so that its image on the electronic sphere becomes
half this circle; thus the single pointsqd on the JTM: class 2 loops are equivalent to class
1 (contractible) loops, and, therefore, the JTM is simply connected. No Berry phase is
possible in such a case [15].

The possibility of such degenerate points may be considered via careful analysis of
the structure of the multiple BO potential sheetsVξ given by the eigenvaluesλξ of the
electron–vibration interaction operator. In most ‘classical’ cases of Berry-phase-entangled
linear JT systems (E⊗ e, T⊗ h, . . . ), the lowest potential sheet remains separated from the
next-lowest one by a finite gap throughout the JTM.Conical intersections between these two
sheets take place at some point in the distortion space, far from the potential minimum. In the
E⊗ e case, for example, such a point is the originq = 0 [16]. There is, however, a second
possibility: somewhere on the JTM, the lowest BO potential sheet becomestangentially
degenerate to the next-lowest BO potential sheet. The energy difference between the two
lowest levels is quadratic in the distance from the degenerate point.

This possibility is indeed realized in our spherical model. Take for example the case in
which L = 2, l = 2, and consider the point [7]

qd =
(

0, 0,− 1√
7
g, 0, 0

)
.

Simple inspection of the coupling matrix4 (8) shows that its lowest eigenvalue

−|qd |γ+2,−2 ≡ −|qd |〈l0|L2, L−2〉 = −
√

2

7
g

is twofold degenerate. The classical BO potential energy is

Eclas= Vmin(qd) = − 1

14
g2h̄ω

and no otherq yields lower potential energy than this: by definition,qd does belong
to the JTM. By inspection of equations (8)–(10), it is possible to verify that the direct
coupling between the two degenerate electronic states (element4±2,∓2 of the coupling
matrix) vanishes identically: moving away fromqd , these two states remain degenerate to
first order, and the degeneracy is only lifted by indirect, second-order coupling to the other
states. qd is indeed a tangency point. Hence, we have detailed the mechanism for the
absence of a Berry phase in theD(2) ⊗ d(2) model.
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It is natural to search for possible extensions of this mechanism to other cases of
spherical DJT models (3). Equations (8)–(12) show that, on theq̂0-axis, the electronic states
are pairwise degenerate (except thec̃†0|0〉 state). We are interested in the pair corresponding
to the lowest and next-lowest BO sheets, and thus to the maximum numerical values of the
Clebsch–Gordan|γ+m,−m|. For theD(2)⊗d(2) model described above, the maximum is indeed
γ+2,−2 [17]. In contrast, for theD(2) ⊗ d(4) case, the largest coefficient isγ+0,0 = (18/35)1/2,
corresponding to the singlet state. Thus, on theq̂0-axis, there are no degeneracy points of
the two lowest BO sheets. We verified that this case has no degenerate points anywhere on
the JTM, the gap between the lowest and next-lowest BO sheet being a constant:

g√
2
|qd |

(
5

14

)1/2

= 3

14
g2

across all of the JTM. We conclude that theD(2) ⊗ d(4) is not a Berry-phase-free
model. The same applies to all ‘complete’ systems, i.e. theD(L) ⊗ d(l=2L) models, since
〈2L 0|L0, L0〉 (corresponding to the nondegenerate electronic state) is the largest Clebsch–
Gordan coefficient among all of the coefficients

〈2L 0|LM,L−M〉 = N(L)/(L−M)!(L+M)!
(whereN(L) is a function ofL only).

If we consider now theD(L) ⊗ d(l=L) models, we see that the coefficients
|〈L0|LM,L−M〉| are peaked around|M| = M̂ ≈ 86%L (for large L). For L < 50,
say, the peak is rather sharp, allowing us to concentrate on the 2×2 block of the interaction
matrix: (

4−M̂,−M̂ 4−M̂,M̂
4M̂,−M̂ 4M̂,M̂

)
=
(
χM̂,−M̂q0 0

0 χ−M̂,M̂q0

)
. (14)

Other diagonal and off-diagonal contributions in the block vanish, since they could only
be related toq±2M̂ , which does not exist, since 2̂M > l = L. This block, therefore,
gives a twofold-degenerate electronic ground state, with second-order departures from the
degeneracy, as the distortion moves away from theq̂0-axis. We conclude that the two lowest
BO sheets, in all of theD(L)⊗ d(L) models, are tangent at (at least) one point, thus making
all loops on the JTM equivalent. As a consequence, this class of models must be considered
as Berry-phase-free models.

Finally, we apply the same reasoning to the study of a genericD(L) ⊗ d(l) model. For
l < L, the |M| = M̂ at which the relevant coefficient|〈l0|LM,L−M〉| is maximum
always satisfies the inequality 2̂M > l. Thus, these are yet more Berry-phase-free systems.
In contrast, forl > L, we go from a case without (D(L)⊗d(L)) to a case with (D(L)⊗d(2L))
Berry phases; thus the result is not trivial. For large enoughl, the maximum coefficient is
attained at someM̂ 6 l, and this leaves nonzero direct off-diagonal coupling elements in
the 2× 2 block (14). In such a case, the degenerate point is not a tangency, but a conical
intersection; thus it cannot belong to the JTM. It can be verified numerically that the tangency
point on theq̂0-axis disappears for alll > lc(L), where the ‘critical value’lc(L) is found
betweenL and 2L. For L = 2, 3, 4, . . . ,10, lc(L) takes values 4, 4, 6, 8, 8, 10, 12, 12, 14
respectively: thus, for example, aD(7)⊗d(8) model has no Berry phase, while aD(9)⊗d(14)

model can have one. Our demonstration focuses on theq̂0-axis: we cannot rule out the
possibility of other tangency points elsewhere on the JTM. Thus the presence of the Berry
phase is verified only forl = 2L, for which the gap between the two lowest sheets is a
constant on the JTM, while it is only likely forlc(L) 6 l < 2L.
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0 2 4 6
0

1

2

3

4

5

L=0L=4

|Eclas|

E
-E

cl
as

Figure 2. The energy of the lowestL = 0 andL = 4 vibronic states of theD(4) ⊗ d(4) system,
as a function of|Eclas| = 63

1144g
2h̄ω. The residual zero-point energy of1

2h̄ω is subtracted. The
energies, in units of the harmonic quantum ¯hω, are obtained by exact diagonalization of the
Hamiltonian (3) on a truncated Hilbert space including up to 16 boson states, enough to reach
convergence in this range of couplings.

5. Numerical results

We have classified Berry-phase-wise a large class of spherical DJT systems: it should be
possible to find evidence for the signatures of this property in their vibronic spectrum. It was
previously shown [7] that the ground state of theD(2)⊗d(2) system becomes nondegenerate
for strong coupling. We have applied the same technique of numerical diagonalization on
a truncated basis to the next Berry-phase-free model, theD(4) ⊗ d(4) system. In figure 2,
we show the vibronic energy of the lowestL = 0 andL = 4 vibronic states above the BO
potential minimumEclas: the lowest nondegenerate and degenerate states cross atg ≈ 8, the
former becoming the strong-coupling ground state, as the absence of a Berry phase predicts.

However, an analogous test for theD(4) ⊗ d(2) model finds a degenerateL = 4 ground
state up to couplingg = 20. An explanation could be searched for in the nature of the
lowestL = 0 state for weak coupling: while inD(L) ⊗ d(L) models it arises as a fragment
of the one-vibron multiplet, in this case it originates from the two-vibron multiplet, due to
angular-momentum conservation. It seems as if the angular moment of thel = 2 vibration
was insufficient to screen the large electronic moment; thus, even in the absence of a Berry
phase, the ground state remains degenerate.

6. Discussion

In the Berry-phase-free DJT systems, the tangency of the lowest two BO sheets, strictly
speaking, invalidates the BO treatment, which assumes a large gap between the lowest
electronic state and the next one. Thus, paradoxically, in these systems it is not the Berry
phase which is related to a breakdown of the BO approximation, but itsabsence. Indeed,
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we have shown that, even though these degeneracies are present only locally on the JTM,
they radically affect the whole coupled dynamics.

Our analysis assumes a linear-JT-coupling scheme (Hamiltonian (1)), which becomes
less realistic as the JT distortion becomes stronger. The perturbative introduction of higher-
order couplings usually has effects similar to those produced by different linear couplings
gE 6= gT in cubic symmetry [19], i.e. of ‘warping’ the JT trough. The continuous JTM
becomes a set of isolated minima, connected by low-energy paths passing through saddle
points. The symmetry of the Hamiltonian and of the JTM is reduced to the symmetry group
G of the molecule. Yet, the connectedness properties are topological properties; therefore
they are robust against perturbations such as the potential warping: even if the symmetry
is reduced, the Berry phase is still present or absent as determined by the linear part. Ham
[20] has shown for the E⊗ e coupling scheme that the introduction of quadratic terms in
the Hamiltonian does not substantially change the picture as far as the Berry phase and the
degeneracy of the ground state are concerned. In fact, even for strong JT coupling, the
tunnelling among rather deep isolated minima is affected by the electronic phase [2], and,
as a result, the lowest tunnel-split state retains the same symmetry and degeneracy as in the
purely linear-coupling case. Of course, in the extreme limit of very large distortion, higher-
order terms dominate, and the DJT is replaced by a static distortion, where any Berry-phase
argument becomes irrelevant.

7. Conclusion

In summary, we propose evidence for a whole family, following theD(2) ⊗ d(2) model, of
Berry-phase-free dynamical JT systems: these are theD(L) ⊗ d(l) models, withl < lc(L),
where the critical valuelc(L) lies betweenL and 2L. For these models, we also show
that the absence of the Berry phase does not automatically imply a nondegenerate strong-
coupling vibronic ground state. Moreover, we prove that a Berry phase is present in the
D(L)⊗d(2L) models, which, as a consequence, have aD(L) [2L+1]-fold degenerate ground
state for any coupling.
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